Decentralized Data Spaces with Gaia-X 87 prostep ivip product data journal 2024-1 The BCM services, such as the semantic hub and identity wallet, are not mandatory and can be considered optional in the Data Space. They may be excluded if not required for other use cases. Conclusion The future of decentralized Data Spaces is set to transform the way data is shared, managed, and utilized. By enhancing interoperability, security, and governance, Data Spaces will unlock new opportunities for innovation and collaboration across various sectors. As technology and regulations evolve, Data Spaces will become a cornerstone of the digital economy, driving growth and efficiency in a data-driven world. The BCM model, along with the service offering templates provides an initial approach to identifying service components for decentralized Data Spaces, meeting the specific needs of various use cases. By continuously mapping diverse use cases though the templates, the model evolves to address emerging challenges and improve service provision. References Federal Ministry for Economic Affairs and Energy. 2019. “Project GAIA-X: A Federated Data Infrastructure as the Cradle of a Vibrant European Eco- system,” Fraunhofer-Gesellschaft. 2016. “Industrial Data Space: Digital sovereignity over data,” GAIA-X European Association for Data and Cloud. 2023. “Gaia-X Architecture Document - 23.1O Release,” available at https://docs.gaia-x.eu/technical-committee/ architecture-document/23.10/. Otto, B., Hompel, M. ten, and Wrobel, S. 2022. Designing Data Spaces, Cham: Springer International Publishing. Schleimer, A. M., and Duparc, E. 2023. “Designing Digital Infrastructures for Industrial Data Ecosystems – A Literature Review,” Wirtschaftsinformatik 2023 Proceedings. 32. Tanrikulu, C., Gogineni, S., Kondak, K., and Lindow, K. “Conception and Require- ments Identification of Gaia-X-Based Service Offerings,” Tardieu, H. 2022. “Role of Gaia-X in the European Data Space Ecosystem,” in Designing Data Spaces, B. Otto, M. ten Hompel and S. Wrobel (eds.), Cham: Springer International Publishing, pp. 41-59 (doi: 10.1007/978-3-030-93975- 5_4). Zheng, X., and Cai, Z. (eds.). 2020. Privacy- Preserved Data Sharing Towards Multiple Parties in Industrial IoTs. Contact Contact Contact Cansu Tanrikulu Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK +49 30 39006-415 cansu.tanrikulu@ipk.fraunhofer.de Sonika Gogineni Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK +49 30 39006-175 Sonika.gogineni@ipk.fraunhofer.de Dr. Kai Lindow Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK +49 172 1068963 kai.lindow@ipk.fraunhofer.de